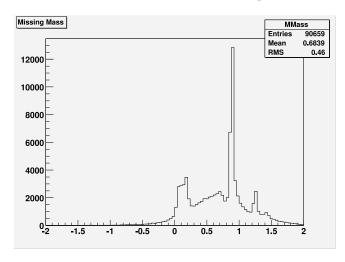
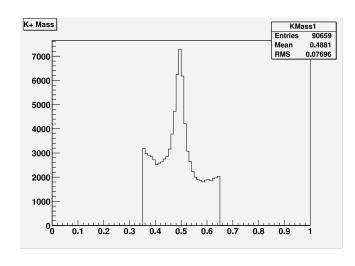
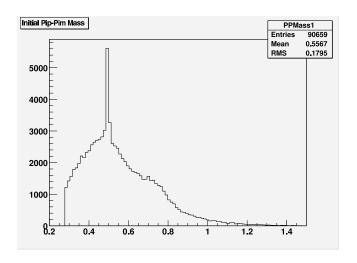


Data Selection

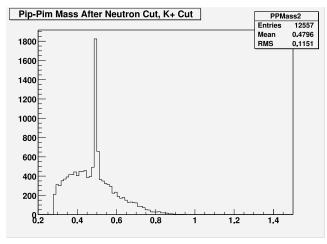

Seth Caughron (REU Student) and John Cummings.

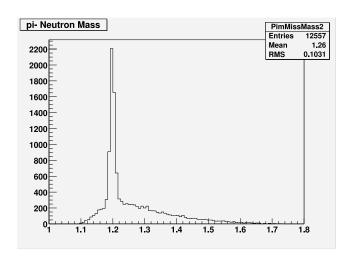
Look for θ^+ in the reaction $\gamma p \to \bar{K}^0_S \theta^+$, where $\bar{K}^0_S \to \pi^+ \pi^-$ and the $\theta^+ \to K^+ n$. i.e. $\gamma p \to K^+ \pi^+ \pi^- n$

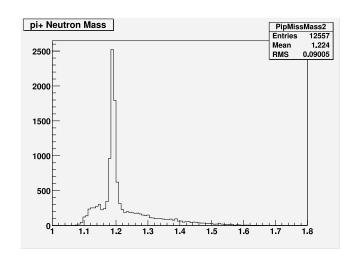

- g1c data from 3.1 GeV runs 20926 to 21359
- skim data with 1 K^+ , 1 π^+ and 1 π^-
- identify neutrons by missing mass, K_S^0 by $\pi^+\pi^-$ invariant mass, and K^+ by TOF mass.
- 3000 events represents $\approx \frac{1}{4}$ of the total

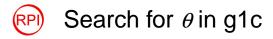


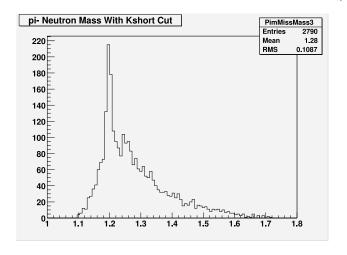
Skimmed data

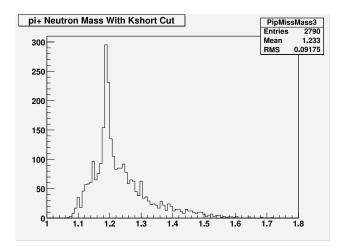

- $K^+\pi^+\pi^-$ skim
- 90K events (representing $\frac{1}{4}$ total)

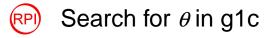



Search for θ in g1c

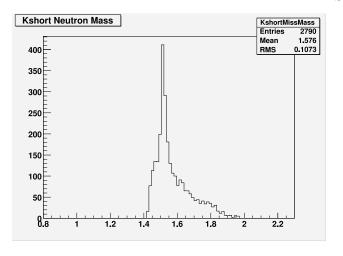

Missing mass cut, tighter K^+ cut

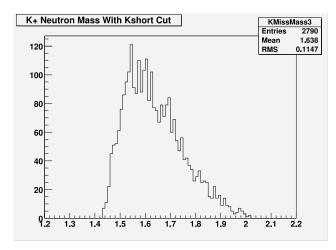



- Select neutron: $0.855 < mm^2 < 0.923$, ($\pm 2\sigma$)
- Tighten K^+ selection: 0.462 < M(TOF) < 0.527, $(\pm 2\sigma)$
- 12.5k events.
- Large Σ 's are from non- K_S background under $\pi^+\pi^-$ peak.



 \bar{K}_S^0 Cut





- Select \bar{K}_S^0 : $0.477 < \mathsf{M}(\pi^+\pi^-) < 0.511$, $(\pm 2\sigma)$
- 3000 events.
- Σ peaks reduced.

 \bar{K}_S^0 Cut

- $\Lambda(1520)$ signal clear in $\bar{K}^0_S n$ mass spectrum
- No clear sign of $\theta^+(1530)$
- Complete g1c data gives factor of 3 more.